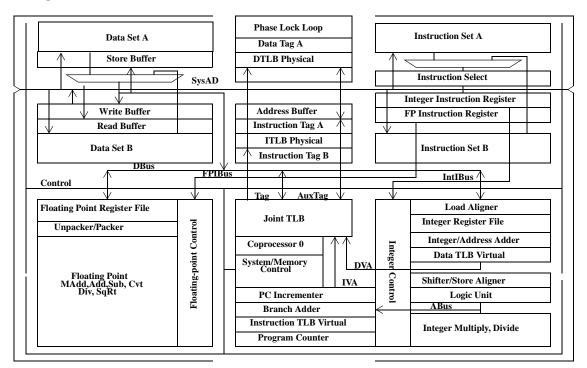
MULTI-ISSUE 64-BIT MICROPROCESSOR


IDT RC5000

FEATURES

- Dual issue super-scalar execution core, executing at high-frequency
 - 250 MHz frequency
 - Dual issue floating-point ALU operations with other instruction classes
 - Traditional 5-stage pipeline, minimizes load and branch latencies
 - Single cycle repeat rate for most floating point ALU operations
- High level of performance for a variety of applications
 - High-performance 64-bit integer unit achieves 330 dhrystone MIPS (dhrystone 2.1)
 - Ultra high-performance floating-point accelerator, directly implementing single- and double-precision operations achieves 500mflops
 - Extremely large on-chip primary caches
 - On-chip secondary cache controller
- Large, efficient on-chip caches
 - 32KB Instruction Cache, 32KB Data Cache
 - 2-set associative in each cache
 - Virtually indexed and physically tagged to minimize cache flushes
 - Write-back and write-through selectable on a per page basis
 - Critical word first cache miss processing
 - Supports back-to-back loads and stores in any combination at full pipeline rate

- High-performance memory system
 - Large primary caches integrated on-chip
 - Secondary cache control interface on-chip
 - High-frequency 64-bit bus interface runs up to 100MHz
 - Aggregate bandwidth of on-chip caches, system interface of 5GB/s
 - High-performance write protocols for graphics and data communications
- MIPS-IV 64-bit ISA for improved computation
 - Compound floating-point operations for 3D graphics and floating-point DSP
 - Conditional move operations
- · Compatible with a variety of operating systems
 - Windows™ CE
 - Numerous MIPS-compatible real-time operating systems
- Uses input system clock, with processor pipeline clock multiplied by a factor of 2-8
- Large on-chip TLB
- Active power management, including use of WAIT operation

BLOCK DIAGRAM

The IDT logo is a registered trademark and ORION, R4600, R4600, R4650, R4700, R5000, RV5000, and RISController are trademarks of Integrated Device Technology, Inc. MIPS is a registered trademark of MIPS Computer Systems, Inc.

DESCRIPTION

The RC5000 serves many performance critical embedded applications, such as high-end internetworking systems, color printers, and graphics terminals.

The RC5000 is optimized for high-performance applications, with special emphasis on system bandwidth and floating point operations, through integration of high-performance computational units and a high-performance memory hierarchy. For this class of application, the result is a relatively low-cost CPU capable of approximately 330 Dhrystone MIPS.

IDT's objectives in offering the RC5000 include:

- Offering a high performance upgrade path to existing embedded customers in the internetworking, office automation and visualization markets.
- Providing a significant improvement in the floatingpoint performance currently available in a moderately priced MIPS CPU.
- Providing improvements in the memory hierarchy of desktop systems by using large primary caches and integrating a secondary cache controller.
- Enabling improvements in performance through the use of the MIPS-IV ISA.

Instruction Issue Mechanism

The RC5000 recognizes two general classes of instructions for multi-issue:

- · Floating-point ALU
- · All others

These instruction classes are pre-decoded by the RC5000, as they are brought on-chip. The pre-decoded information is stored in the instruction cache.

Assuming that there are no pending resource conflicts, the RC5000 can issue one instruction per class per pipeline clock cycle. Note that this broad separation of classes insures that there are no data dependencies to restrict multi-issue.

However, long-latency resources in either the floatingpoint ALU (e.g. DIV or SQRT instructions) or instructions in the integer unit (such as multiply) can restrict the issue of instructions. Note that the R5000 does not perform outof-order or speculative execution; instead, the pipeline slips until the required resource becomes available.

There are no alignment restrictions on dual-issue instruction pairs. The RC5000 fetches two instructions from the cache per cycle. Thus, for optimal performance, compilers should attempt to align branch targets to allow dual-issue on the first target cycle, since the instruction cache only performs aligned fetches.

Instruction Set Architecture

The RC5000 implements the MIPS-IV 64-bit ISA, including CP1 and CP1X functional units (and their instruction set).

Integer Pipeline

The RC5000 is a limited dual-issue machine that utilizes a traditional 5-stage integer pipeline. This basic integer pipeline of the RC5000 is illustrated in Figure 1.

The integer instruction execution speed is tabulated (in number of pipeline clocks) as follows:

Operation	Latency	Repeat
Load	2	1
Store	2	1
MULT/MULTU	8	8
DMULT/DMULTU	12	12
DIV/DIVU	36	36
DDIV/DDIVU	68	68
Other Integer ALU	1	1
Branch	2	2
Jump	2	2

The RC5000's short pipeline keeps the load and branch latencies very low. The caches contain special logic that allows any combination of loads and stores to execute in back-to-back cycles without requiring pipeline slips or stalls. (This presumes, of course, that the operation does not miss in the cache.)

	11	21	1R	2R	1A	2A	1D	2D	1W	2W]			
													-	
I ₁			11	21	1R	2R	1A	2A	1D	2D	1W	2W		
					41	01	1.0	l op	4.0		45	0.0	1 414/	7
12					11	21	1R	2R	1A	2A	1D	2D	1W	•••
							11	21	1R	2R	1A	2A	1D	7
13							- 11	Z I	IK	ZK	IA	ZA	טו	
									11	21	1R	2R	1A	7
14									- ''	21	111	211	1/]
									one	cycle	 			
Key to I	Figuro								One	- Cyclo				
1I-1R	_	on occho o												
		Instruction cache access												
	Instruction virtual to physical address translation													
21					ranslation									
2A-2D	Data cad	che access	and load	align										
2A-2D 1D	Data cad Data virt	che access ual to phys	and load sical addre	align ess transla										
2A-2D 1D 1D-2D	Data cad Data virt Virtual to	che access ual to phys physical a	and load sical addre	align ess transla										
2A-2D 1D 1D-2D 2R	Data cad Data virt Virtual to Register	che access tual to physical a file read	s and load sical addre address tra	align ess transla										
2A-2D 1D 1D-2D 2R 2R	Data cad Data virt Virtual to Register Bypass	che access ual to phys o physical a file read calculation	s and load sical addre address tra	align ess transla										
2A-2D 1D 1D-2D 2R 2R 2R 2R	Data cad Data virt Virtual to Register Bypass of Instruction	che access rual to physical a file read calculation on decode	s and load sical addre address tra	align ess transla										
2A-2D 1D 1D-2D 2R 2R 2R 2R 2R	Data cad Data virt Virtual to Register Bypass of Instruction	che access cual to physical a file read calculation on decode address ca	and load sical addre address tra	align ess transla										
2A-2D 1D 1D-2D 2R 2R 2R 2R	Data cad Data virt Virtual to Register Bypass of Instruction Branch a	che access cual to physical a file read calculation on decode address ca slip decision	s and load sical addre address tra lculation on	align ess transla										
2A-2D 1D 1D-2D 2R 2R 2R 2R 2R	Data cad Data virt Virtual to Register Bypass of Instruction Branch a	che access cual to physical a file read calculation on decode address ca	s and load sical addre address tra lculation on	align ess transla										
2A-2D 1D 1D-2D 2R 2R 2R 2R 2R 1A	Data cad Data virt Virtual to Register Bypass of Instruction Branch at Issue or Integer at	che access cual to physical a file read calculation on decode address ca slip decision	s and load sical addre address tra lculation on I, shift	align ess transla anslation										
2A-2D 1D 1D-2D 2R 2R 2R 2R 2R 1A	Data cad Data virt Virtual to Register Bypass of Instruction Branch at Issue or Integer at	che access tual to physical a physical a file read calculation on decode address ca slip decision add, logica tual address	s and load sical addre address tra lculation on I, shift	align ess transla anslation										
2A-2D 1D 1D-2D 2R 2R 2R 2R 1A 1A-2A	Data cad Data virt Virtual to Register Bypass of Instruction Branch at Issue or Integer at Data virt	che accessival to physical a file read calculation on decode address ca slip decision ded, logica aual address gn	s and load sical addre address tra lculation on I, shift	align ess transla anslation										

Figure 1. R5000 Integer Pipeline Stages

RC5000 Computational Units

The RC5000 contains the following computational units:

Integer ALU. The RC5000 implements a full, single-cycle 64-bit ALU for all integer ALU functions other than multiply and divide. Bypassing is used to support back-to-back ALU operations at the full pipeline rate, without requiring stalls for data dependencies.

Integer Multiply/Divide Unit. This unit is separated from the primary ALU, to allow these longer latency operations to run in parallel with other operations. The pipeline stalls only if an attempt to access the HI or LO registers is made before the operation completes.

Floating-point ALU. This unit is responsible for all CP1/CP1X ALU operations other than DIV/SQRT. The unit is pipelined to allow a single-cycle repeat rate for single-precision operations

Floating-point DIV/SQRT unit. This unit is separated from the other floating-point ALU, so that these long latency operations do not prevent the issue of other floating point operations.

In addition, the RC5000 implements separate logical units to implement loads, stores, and branches.

Electrical Specifications

Operating Frequency

The input clock operates in a frequency range of 33MHz to 100MHz. The pipeline frequency for the RC5000 is 2 to 8 times the input clock (up to the maximum for the speed grade of CPU).

THERMAL CONSIDERATIONS

The RC5000 utilizes special packaging techniques, to improve the thermal properties of high-speed processors. The RC5000 is packaged using cavity down packaging in a 223-pin PGA package with integral thermal slug, and a 272-pin BGA package. These packages effectively dissipate the power of the CPU, increasing device reliability.

The RC5000 utilizes an all-aluminum package with the die attached to a normal copper lead frame mounted to the aluminum casing. Due to the heat-spreading effect of the aluminum, the package allows for an efficient thermal transfer between the die and the case. The aluminum offers less internal resistance from one end of the package to the other, reducing the temperature gradient across the package and therefore presenting a greater area for convection and conduction to the PCB for a given temperature. Even nominal amounts of airflow will dramatically reduce the junction temperature of the die, resulting in cooler operation.

The RC5000 is guaranteed in a case temperature range of 0° to +85° C. The type of package, speed (power) of the device, and airflow conditions affect the equivalent ambient temperature conditions that will meet this specification.

The equivalent allowable ambient temperature, Ta, can be calculated using the thermal resistance from case to ambient (\emptyset CA) of the given package. The following equation relates ambient and case temperatures:

where P is the maximum power consumption at hot temperature, calculated by using the maximum Icc specification for the device. Typical values for \varnothing CA at various airflows are shown in Table 1.

	Øca					
Airflow (ft/min)	0	200	400	600	800	1000
PGA	16	7	5	3	2.5	2
BGA	14	6	4	3	2.5	2

Table 1. Thermal Resistance (ØCA) at Various Airflows

Note: The RC5000 implements advanced power management to substantially reduce the average power dissipation of the device. This operation is described in the *IDT79RV5000 RISC Microprocessor Reference Manual*.

DATA SHEET REVISION HISTORY

Changes to version dated January 1996:

Pin Description section:

- Corrected pin list for Clock/Control, Initialization, and Secondary Cache interfaces.

Advance Pin-Out section:

- Changed pins AA19 and AA21 from Vcc to Vss.

Changes to version dated March 1997:

- Upgraded data sheet status from "Preliminary" to Final.
- Added section on thermal considerations
- Added section on absolute maximum ratings

Changes to version dated June 1997:

- Revised Power Consumption and System Interface Parameters

Changes to version dated September 1997:

- Added user notation on Boot Mode Bits 20 and 33 for 200 MHz frequency

Changes to version dated June 1998:

- Added 250 MHz; changed naming conventions

LOGIC SYMBOL

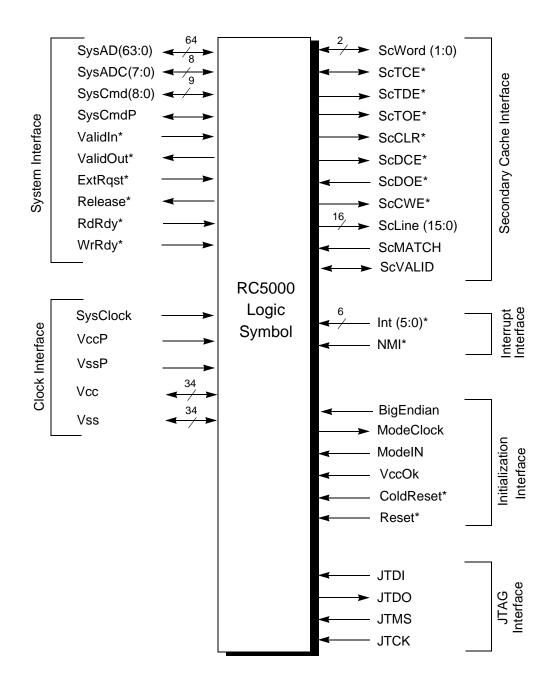


Figure 1. RC5000 Logic Symbol

Pin Description

RC5000 implements a bus similar to that of the RC4700. Table 2 lists and describes the RC5000 signals.

Pin Name	Туре	Description
System interface:		
ExtRqst*	Input	External Request. Signals that the system interface needs to submit an external request.
Release*	Output	Release Interface. Signals that the processor is releasing the system interface to slave state
RdRdy*	Input	Read Ready. Signals that an external agent can now accept a processor read.
WrRdy*	Input	Write Ready. Signals that an external agent can now accept a processor write request.
ValidIn*	Input	Valid Input. Signals that an external agent is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the SysCmd bus.
ValidOut*	Output	Valid Output. Signals that the processor is now driving a valid address or data on the SysAD bus and a valid command or data identifier on the SysCmd bus.
SysAD(63:0)	Input/Output	System Address/Data bus. A 64-bit address and data bus for communication between the processor and an external agent.
SysADC(7:0)	Input/Output	System Address/Data check bus. An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.
SysCmd(8:0)	Input/Output	System Command/data identifier bus. A 9-bit bus for command and data identifier transmission between the processor and an external agent.
SysCmdP	Input/Output	Reserved System Command/data identifier bus parity. For the RC5000, unused on input and zero on output.
Clock/control interf	ace:	
SysClock	Input	Master Clock. Master clock input at the bus frequency. The pipeline clock is derived by multiplying this clock up.
VCCP	Input	Quiet VCC for PLL. Quiet VCC for the internal phase locked loop.
VSSP	Input	Quiet VSS for PLL. Quiet VSS for the internal phase locked loop.
Interrupt interface:		
Int(5:0)*	Input	Interrupt. Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.
NMI*	Input	Non-maskable interrupt. Non-maskable interrupt, ORed with bit 6 of the interrupt register.
JTAG interface:		
JTDI	Input	JTAG Data In. Connected directly to JTDO. No JTAG implemented; should be pulled High.
JTCK	Input	JTAG Clock Input. Unused input; should be pulled High.
JTDO	Output	JTAG Data Out. Connected directly to JTDI. If no external scan used, this is a no connect.
	T	able 2. RC5000 Signal Names and Descriptions (Page 1 of 2)

Table 2. RC5000 Signal Names and Descriptions (Page 1 of 2)

Pin Name	Туре	Description
JTMS	Input	JTAG Command. Unused input. Should be pulled High.

Initialization interface:

VCCOk	Input	VCC is OK. When asserted, this signal indicates to the RC5000 that the power supply has been aboveVcc minimum for more than 100 milliseconds and will remain stable. The assertion of VCCOk initiates the reading of the boot-time mode control serial stream.
ColdReset*	Input	Cold Reset. This signal must be asserted for a power on reset or a cold reset. ColdReset must be de-asserted synchronously with SysClock.
Reset*	Input	Reset. This signal must be asserted for any reset sequence. It may be asserted synchronously or asynchronously for a cold reset, or synchronously to initiate a warm reset. Reset must be synchronously deasserted with SysClock.
ModeClock	Output	Boot Mode Clock. Serial boot-mode data clock output at the system clock frequency divided by two hundred and fifty six.
Modeln	Input	Boot Mode Data In. Serial boot-mode data input.
BigEndian	Input	Endian mode select. Allows the system to change the processor addressing mode without rewriting the mode ROM. If endianness is to be specified by using the BigEndian pin, program mode ROM bit 8 to 0; if endianness is to be specified by the mode ROM, ground the BigEndian pin.

Secondary cache interface:

ScCLR*	Output	Secondary Cache Block Clear. Clears all valid bits in those Tag RAM's which support this function.
ScCWE*(1:0)	Output	Secondary Cache Write Enable. Asserted during writes to the secondary cache
ScDCE*(1:0)	Output	Data RAM Chip Enable. Chip Enable for Secondary Cache Data RAM
ScDOE*	Input	Data RAM Output Enable. Asserted by the external agent to enable data onto the SysAD bus
ScLine (15:0)	Output	Data RAM Output Enable. Cache line index for secondary cache
ScMATCH	Input	Secondary cache Tag Match. Asserted by Tag RAM on Secondary cache tag match
ScTCE*	Output	Secondary cache Tag RAM Chip Enable. Chip enable for secondary cache tag RAM.
ScTDE*	Output	Secondary cache Tag RAM Data Enable. Data Enable for Secondary Cache Tag RAM.
ScTOE*	Output	Secondary cache Tag RAM Output Enable. Tag RAM Output enable for Secondary Cache Tag RAM's
ScWord (1:0)	Input/Output	Secondary cache Word Index. Determines correct double-word of Secondary cache Index
ScValid	Input/Output	Secondary cache Valid. Always driven by the CPU except during a cache probe operation, when it is driven by the tag RAM.

Table 2. RC5000 Signal Names and Descriptions (Page 2 of 2)

ABSOLUTE MAXIMUM RATINGS¹

		RC5000 3.3V±5%	
Symbol	Rating	Commercial	Unit
V _{TERM}	Terminal Voltage with respect to GND	-0.5 ⁽²⁾ to +4.6	V
T _C	Operating Temperature (case)	0 to +85	°C
T _{BIAS}	Case Temperature Under Bias	-55 to +125	°C
T _{STG}	Storage Temperature	-55 to +125	°C
I _{IN}	DC Input Current	20 ⁽³⁾	mA
I _{OUT}	DC Output Current	50 ⁽⁴⁾	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. V_{IN} minimum = -2.0V for pulse width less than 15ns. V_{IN} should not exceed V_{CC} +0.5 Volts.
- 3. When $V_{IN} < 0V$ or $V_{IN} > V_{CC}$
- 4. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.

RECOMMENDED OPERATION TEMPERATURE AND SUPPLY VOLTAGE

			RC5000
Grade	Temperature	GND	V _{CC}
Commercial	0°C to +85°C (Case)	0V	3.3V±5%

AC ELECTRICAL CHARACTERISTICS

(V_{CC}= 3.3V± 5%; T_{case} = 0°C to +85°C)

Clock Parameters—RC5000

		180MHz		200MHz†		250MHz†#		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units
SysClock HIGH	t _{SCHIGH}	3		3		2.5	_	ns
SysClock LOW	t _{SCLOW}	3	_	3	_	2.5	_	ns
SysClock Frequency	_	33	90	33	100	33	125	MHz
SysClock Period	t _{SCP}	11.1	30	10	30	8	30	ns
SysClock Rise Time	t _{SCRise}	_	2.5	_	2	_	2	ns
SysClock Fall Time	t _{SCFall}	_	2.5	_	2	_	2	ns
ModeClock Period	t _{ModeCKP}	_	256 t _{SCP}	_	256 t _{SCP}	_	256 t _{SCP}	ns

Capacitive Load Deration—RC5000

			180MHz		200MHz†		250MHz†#		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Load Derate	C _{LD}	_	_	2		2		2	ns/25pF

Power Consumption—RC5000

		180MHz	200MHz†	250MHz†#	
Parameter		Max	Max	Max	Conditions
System Condition		180/45MHz	200/50MHz	250/62.5MHz	_
	Standby	120mA	120mA	120mA	$C_L = 50 \text{ pF}$
I _{cc}	Active	1100mA	1300mA	1800mA	$C_L = 50pF$ Pipelined writes or write re-issue $T_c = 25^{\circ}C$

System Interface Parameters—RC5000

			180	MHz	2001	/IHz†	250M		
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Data Output	t _{DM} = Min t _{DO} = Max	mode ₁₄₁₃ = 10 (fastest)	1.5*	7	1.5*	5	1.5*	5	ns
	IDO – Max	mode ₁₄₁₃ = 01 (slowest)	1.5*	11	1.5*	11	1.5*	11	ns

			180	MHz	200MHz†		250MHz†#			
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units	
Data Input	t _{DS}	t _{rise} = 3ns	1.5	_	1.5	_	1.5	_	ns	
Data Input	t _{DH}	t _{fall} = 3ns	0.5	_	0.5	_	0.5	_	ns	
*Guaranteed by design										

Boot Time Interface Parameters—RV5000

			180	180MHz		200MHz†		1Hz†#	
Parameter	Symbol	Test Conditions	Min	Max	Min	Max	Min	Max	Units
Mode Data Setup	t _{DS}	_	4	_	4	_	4	_	Master Clock Cycle
Mode Data Hold	t _{DH}	_	0	_	0	_	0	_	Master Clock Cycle

[†] Boot Mode Bits 20 and 33 must be set to "1" for operation at this frequency.

[#] Preliminary information for 250MHz.

DC ELECTRICAL CHARACTERISTICS

 $(V_{cc} = 3.3V \pm 5\%; T_{case} = 0^{\circ}C \text{ to } +85^{\circ}C)$

	180	180MHz		0MHz 200MHz†		250MHz†#		250MHz†#		
Parameter	Min	Max	Min	Max	Min	Max	Conditions			
V _{OL}	_	0.1V	_	0.1V	_	0.1V	I _{OUT} = 20uA			
V _{OH}	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_	V _{CC} - 0.1V	_				
V _{OL}	_	0.4V	_	0.4V	_	0.4V	I _{OUT} = 4mA			
V _{OH}	2.4V	_	2.4V	_	2.4V	_				
V _{IL}	-0.5V	0.2V _{CC}	-0.5V	0.2V _{CC}	-0.5V	0.2V _{CC}	_			
V _{IH}	0.7V _{CC}	V _{CC} + 0.5V	0.7V _{CC}	V _{CC} + 0.5V	0.7V _{CC}	V _{CC} + 0.5V	_			
I _{IN}	_	±10uA	_	±10uA	_	±10uA	$0 \le V_{IN} \le V_{CC}$			
C _{IN}	_	10pF	_	10pF	_	10pF	_			
C _{IO}	_	10pF	_	10pF	_	10pF	_			
C _{clk}	_	10pF	_	10pF	_	10pF				
I/O _{LEAK}	_	20uA	_	20uA	_	20uA	Input/Output Leakage			

[†] Boot Mode Bits 20 and 33 must be set to "1" for operation at this frequency.

[#] Preliminary information for 250MHz.

PHYSICAL SPECIFICATIONS

The RC5000 is available in two packages, the 223-pin CPGA and the 272-ball SBGA. Information on the CPGA package is shown in Figure 2 and Table 3; information on the SBGA package is shown in Figure 3 and Table 4.

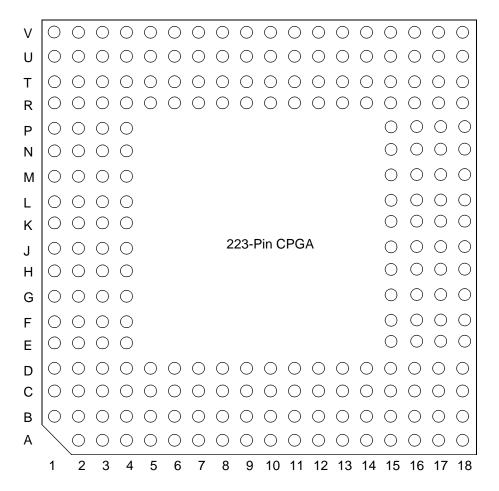
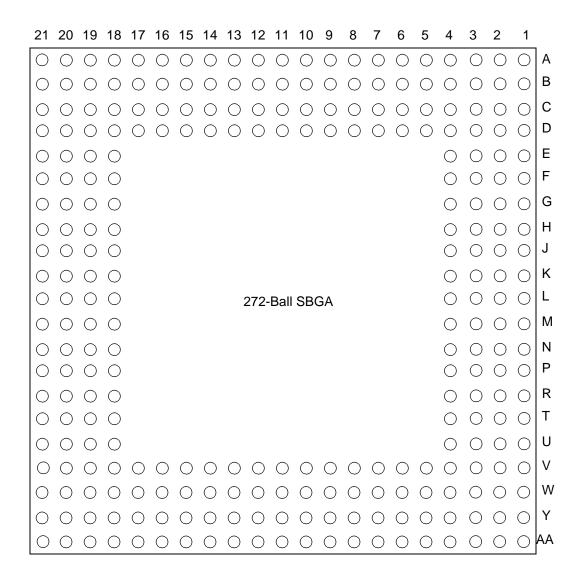


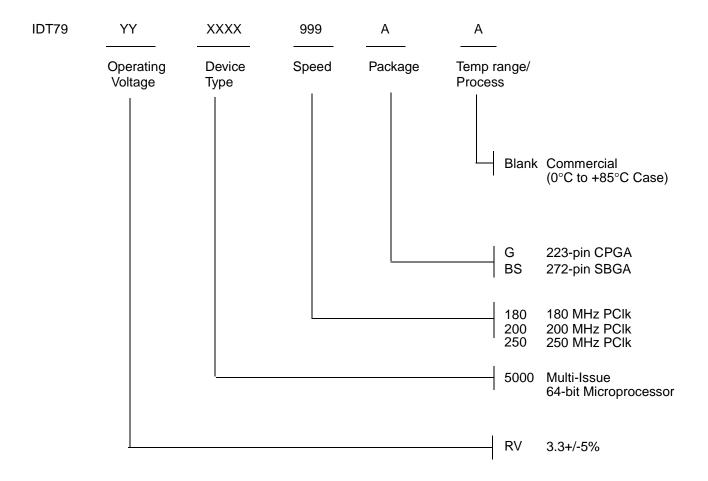
Figure 2. RC5000 CPGA Pin Orientation (Bottom View)

223-Pin CPGA Pinout

Pkg		Pkg		Pkg		Pkg		Pkg		Pkg	
Pin	Function	Pin	Function	Pin	Function	Pin	Function	Pin	Function	Pin	Function
A2	Vcc	C5	SysADC[6]	E18	Vcc	K17	VssP	R6	SysAD[51]	U9	SysAD[63]
А3	Vss	C6	SysAD[16]	F1	Vcc	K18	Vss	R7	SysAD[55]	U10	SysAD[13]
A4	Vcc	C7	SysAD[50]	F2	Reserved	L1	Vss	R8	SysAD[27]	U11	SysAD[11]
A5	Vss	C8	SysAD[22]	F3	ScValid	L2	SysCmd[8]	R9	SysAD[31]	U12	SysAD[9]
A6	Vss	C9	SysAD[24]	F4	INT[1]*	L3	SysCmd[7]	R10	SysAD[43]	U13	SysAD[37]
A7	Vcc	C10	SysAD[28]	F15	ScDCE[0]*	L4	SysCmd[5]	R11	SysAD[39]	U14	SysAD[3]
A8	Vss	C11	SysAD[62]	F16	ScCWE[0]*	L15	ScLine[12]	R12	SysAD[35]	U15	ScWord[0]
A9	Vcc	C12	SysAD[44]	F17	ScTDE*	L16	ScLine[14]	R13	SysAD[1]	U16	Vcc
A10	Vss	C13	SysAD[10]	F18	Vss	L17	ScLine[15]	R14	ScWord[1]	U17	Vss
A11	Vcc	C14	SysAD[38]	G1	Vss	L18	Vcc	R15	ScLine[0]	U18	Vss
A12	Vss	C15	SysAD[4]	G2	Reserved	M1	Vcc	R16	ScLine[3]	V1	Vss
A13	Vcc	C16	SysAD[34]	G3	Reserved	M2	SysCmd[6]	R17	ScLine[6]	V2	Vss
A14	Vss	C17	SysAD[2]	G4	Reserved	М3	SysCmd[4]	R18	Vss	V3	Vcc
A15	Vss	C18	Vss	G15	ScCLR*	M4	SysCmd[1]	T1	Vss	V4	Vss
A16	Vcc	D1	Vss	G16	ScTCE*	M15	ScLine[8]	T2	SysAD[15]	V5	Vss
A17	Vss	D2	INT3*	G17	Modeln	M16	ScLine[10]	Т3	SysAD[47]	V6	Vcc
A18	Vss	D3	INT5*	G18	Vcc	M17	ScLine[13]	T4	SysAD[17]	V7	Vss
B1	Vss	D4	Release*	H1	Vcc	M18	Vss	T5	SysAD[19]	V8	Vcc
B2	Vss	D5	Vcc	H2	Reserved	N1	Vss	T6	SysAD[23]	V9	Vss
В3	Vcc	D6	SysADC[2]	H3	Reserved	N2	SysCmd[3]	T7	SysAD[57]	V10	Vcc
В4	SysADC[4]	D7	SysAD[48]	H4	Reserved	N3	SysCmd[2]	T8	SysAD[29]	V11	Vss
B5	SysADC[0]	D8	SysAD[52]	H15	VccOK	N4	SysADC[7]	T9	Vcc	V12	Vcc
В6	SysAD[18]	D9	SysAD[56]	H16	ModeClock	N15	ScLine[5]	T10	SysAD[45]	V13	Vss
В7	SysAD[20]	D10	SysAD[60]	H17	SysClock	N16	ScLine[7]	T11	SysAD[41]	V14	Vcc
B8	SysAD[54]	D11	SysAD[14]	H18	Vss	N17	ScLine[11]	T12	SysAD[7]	V15	Vss
В9	SysAD[26]	D12	SysAD[42]	J1	Vss	N18	Vcc	T13	SysAD[5]	V16	Vss
B10	SysAD[58]	D13	SysAD[8]	J2	WrRdy*	P1	Vcc	T14	SysAD[33]	V17	Vcc
B11	SysAD[30]	D14	SysAD[36]	J3	ValidIn*	P2	SysCmd[0]	T15	Reset*	V18	Vss
B12	SysAD[46]	D15	ColdReset*	J4	ExtReq*	P3	SysCmdP	T16	ScLine[1]		
B13	SysAD[12]	D16	SysAD[0]	J15	JTDO	P4	SysADC[1]	T17	Vcc		
B14	SysAD[40]	D17	ScTOE*	J16	JTDI	P15	ScLine[2]	T18	Vcc		
B15	SysAD[6]	D18	Vcc	J17	JTCK	P16	ScLine[4]	U1	Vcc		
B16	Vss	E1	Vss	J18	Vcc	P17	ScLine[9]	U2	Vcc		
B17	Vcc	E2	INT[0]*	K1	Vcc	P18	Vss	U3	Vss		
B18	Vcc	E3	INT[2]*	K2	ScMatch	R1	Vcc	U4	SysAD[21]		
C1	Vcc	E4	INT[4]*	K3	RdRdy*	R2	SysADC[5]	U5	SysAD[53]		
C2	Vcc	E15	SysAD[32]	K4	ScDOE*	R3	SysADC[3]	U6	SysAD[25]		
C3	ValidOut*	E16	ScDCE[1]*	K15	JTMS	R4	BigEndian	U7	SysAD[59]		
C4	NMI*	E17	ScCWE[1]*	K16	VccP	R5	SysAD[49]	U8	SysAD[61]		

Table 3. 223-Pin CPGA Pinout




Figure 3. Ball Grid Array Package (Bottom View)

272-Ball SBGA Pinout

Pkg Pin	Function	Pkg Pin	Function	Pkg Pin	Function	Pkg Pin	Function	Pkg Pin	Function	Pkg Pin	Function
AA1	Vss	B5	SysAD0	D9	Vss	J2	SysAD46	P21	SysAD55	W1	Vss
AA2	Vcc	B6	ScTOE*	D10	Vcc	J3	SysAD14	R1	Vss	W2	Vcc
AA3	Vss	B7	ScCLR*	D11	Vccp	J4	Vss	R2	SysAD18	W3	Vcc
AA4	ValidOut*	B8	ScTDE*	D12	Vcc	J18	Vss	R3	SysAD48	W4	Vcc
AA5	Vss	B9	ModeClock	D13	Vss	J19	SysAD9	R4	Vcc	W5	Int*5
AA6	Int*0	B10	JTDI	D14	Vcc	J20	SysAD41	R18	Vcc	W6	Int*4
AA7	Vss	B11	JTCK	D15	Vcc	J21	Vss	R19	SysAD53	W7	Int*1
AA8	Reserved	B12	N/C	D16	Vss	K1	SysAD60	R20	SysAD23	W8	Reserved
AA9	Vss	B13	ScLine14	D17	Vcc	K2	SysAD30	R21	Vss	W9	Reserved
AA10	WrRdy*	B14	ScLine10	D18	Vss	K3	SysAD62	T1	SysAD16	W10	Reserved
AA11	Vss	B15	ScLine9	D19	Vcc	K4	Vcc	T2	SysADC0	W11	ValidIn*
AA12	ScMatch	B16	ScLine6	D20	Vcc	K18	Vcc	Т3	SysADC2	W12	ScDOE*
AA13	Vss	B17	ScLine3	D21	Vcc	K19	SysAD11	T4	Vss	W13	SysCmd7
AA14	SysCmd6	B18	ScLine1	E1	Vss	K20	SysAD43	T18	Vss	W14	SysCmd4
AA15	Vss	B19	Vcc	E2	SysAD36	K21	SysAD13	T19	SysAD19	W15	SysCmd1
AA16	SysCmd2	B20	Vcc	E3	SysAD4	L1	Vss	T20	SysAD51	W16	SysADC7
AA17	Vss	B21	Vcc	E4	Vcc	L2	SysAD58	T21	SysAD21	W17	SysADC5
AA18	SysADC3	C1	Vss	E18	Vcc	L3	SysAD28	U1	Vss	W18	SysAD47
AA19	Vss	C2	Vcc	E19	ScWord1	L4	Vcc	U2	SysADC4	W19	BigEndian
AA20	Vcc	C3	ColdReset*	E20	ScWord0	L18	Vcc	U3	SysADC6	W20	Vcc
AA21	Vss	C4	SysAD34	E21	Vss	L19	SysAD45	U4	Vcc	W21	Vss
A1	Vss	C5	ScDCE*1	F1	SysAD8	L20	SysAD63	U18	Vcc	Y1	Vcc
A2	Vcc	C6	ScDCE*0	F2	SysAD38	L21	Vss	U19	SysAD17	Y2	Vcc
A3	Vss	C7	ScCWE*0	F3	SysAD6	M1	SysAD26	U20	SysAD49	Y3	Vcc
A4	SysAD32	C8	ScTCE*	F4	Vss	M2	SysAD56	U21	Vss	Y4	Release*
A5	Vss	C9	Modeln	F18	Vss	M3	SysAD24	V1	Vcc	Y5	Int*3
A6	ScCWE*1	C10	JTDO	F19	SysAD1	M4	Vcc	V2	Vcc	Y6	Int*2
A7	Vss	C11	Vssp	F20	SysAD33	M18	Vcc	V3	Vcc	Y7	ScValid
A8	VCCOK	C12	JTMS	F21	SysAD3	M19	SysAD29	V4	Vss	Y8	Reserved
A9	Vss	C13	ScLine13	G1	Vss	M20	SysAd61	V5	NMI*	Y9	Reserved
A10	MasterClk	C14	ScLine11	G2	SysAD10	M21	SysAD31	V6	Vss	Y10	Reserved
A11	Vss	C15	ScLine8	G3	SysAD40	N1	Vss	V7	Vcc	Y11	ExtRqst*
A12	ScLine15	C16	ScLine5	G4	Vcc	N2	SysAD54	V8	Vcc	Y12	RdRdy*
A13	Vss	C17	ScLine4	G18	Vcc	N3	SysAD22	V9	Vss	Y13	SysCmd8
A14	ScLine12	C18	ScLine0	G19	SysAD35	N4	Vss	V10	Vcc	Y14	SysCmd5
A15	Vss	C19	Reset*	G20	SysAD5	N18	Vss	V11	Vcc	Y15	SysCmd3
A16	ScLine7	C20	Vcc	G21	Vss	N19	SysAD27	V12	Vcc	Y16	SysCmd0
A17	Vss	C21	Vss	H1	SysAD42	N20	SysAD59	V13	Vss	Y17	SysCmdP
A18	ScLine2	D1	Vcc	H2	SysAD44	N21	Vss	V14	Vcc	Y18	SysADC1
A19	Vss	D2	Vcc	H3	SysAD12	P1	SysAD50	V15	Vcc	Y19	SysAD15
A20	Vcc	D3	Vcc	H4	Vcc	P2	SysAD52	V16	Vss	Y20	Vcc
A21	Vss	D4	Vss	H18	Vcc	P3	SysAD20	V17	Vcc	Y21	Vcc
B1	Vcc	D5	Vcc	H19	SysAD7	P4	Vcc	V18	Vss	1	
B2	Vcc	D6	Vss	H20	SysAD39	P18	Vcc	V19	Vcc	1	
B3	Vcc	D7	Vcc	H21	SysAD37	P19	SysAD25	V20	Vcc	1	
B4	SysAD2	D8	Vcc	J1	Vss	P20	SysAD57	V21	Vcc	1	

Table 4. 272-Ball SBGA Pinout

ORDERING INFORMATION

VALID COMBINATIONS

IDT79RV5000 - 180, 200MHz G CPGA package IDT79RV5000 - 180, 200, 250MHz BS SBGA package

Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet in order to improve design or performance and to supply the best possible product.

2975 Stender Way, Santa Clara, CA 95054-3090 Telephone: (408) 727-6116 FAX 408-492-8674